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Abstract

While most of the traffic on the Internet today consists of TCP flows, conventional wisdom holds that TCP is
unsuitable for video streaming applications due to its insistence on reliability and lack of throughput guarantees.
However, most streaming protocols need to implement many features of TCP including congestion control and recov-
ery from packet loss. Additionally, using TCP for streaming is often unavoidable when the target clients are located
behind firewalls. This work seeks to dispel the notion that TCP is inherently unsuitable for streaming. We focus on
the common case of streaming video to receivers whose last mile connections to the Internet are bandwith-limited
and act as network bottlenecks. Users generally run multiple concurrent networking applications that compete for
the scarce bandwidth resource. Standard TCP shares bottleneck link capacity according to connection round-trip
time (RTT), and therefore may not provide streaming applications with the necessary bit-rate. In our prior work,
we outlined a receiver-based bandwidth sharing system (BWSS) for allocating the capacity of last mile bottlenecks
among TCP flows according to a user’s preferences. This system does not require modifications to the TCP protocol,
network infrastructure or sending hosts, making it easy to deploy. By breaking TCP fairness between flows on the
access link, the BWSS can limit the throughput fluctuations of high-priority applications. In the present paper we
utilize the BWSS to perform video streaming over TCP. We establish the benefits of our proposed approach over
standard TCP through Internet experiments involving a prototype for the Linux operating system. Furthermore, we
demonstrate scenarios in which a client using our bandwidth control system may actually obtain better performance
than TCP-friendly UDP streaming protocols.

1 Introduction

The recent proliferation of broadband Internet access has fueled the increasing popularity of video streaming appli-
cations. From news clips on sites such as CNN.com, to video on demand from MovieFlix [1], the current Internet
offers a much richer multimedia experience than in the past. While the majority of traffic on the Internet today is
comprised of TCP [2] flows, conventional wisdom holds that TCP is unsuitable for “real-time” traffic due to its lack
of throughput guarantees and insistence on reliability. The only alternative protocol to TCP is UDP, which does not
retransmit lost data packets, or provide the congestion control [3] features offered in TCP. It is widely accepted in
the networking community that congestion control is essential to the continued growth and stability of the Internet
[4]. Consequently, much work has gone into the creation of streaming protocols built on top of UDP, which perform
some form of congestion control and ensure fairness with the ubiquitous, competing TCP traffic [5]. A wide body of
literature, including [6] and [7], attest to the technical challenges involved in creating such TCP-friendly rate control
protocols. Furthermore, in many situations streaming over TCP is unavoidable, such as when client machines are
located behind network firewalls permitting only inbound HTTP traffic.

This works seeks to dispel the notion that TCP is always unsuitable for multimedia streaming. We note the benefits
of streaming with TCP, including its retransmission capabilities, congestion control, as well as natural fairness with
other TCP traffic. Many streaming applications involve a certain amount of pre-buffering which allows them to absorb
any jitter, or variation in packet delay, in data transmission. Hence retransmission delay and temporary bandwidth
fluctuations due to packet loss can be accommodated through appropriate pre-buffering of the multimedia stream.

Our work focuses on the common practice of streaming video to receivers whose last mile connections to the Inter-
net are bandwidth limited. Additionally, most users run multiple concurrent networking applications that compete for
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the scarce bandwidth resource. In many cases, the limited bandwidth and operation of multiple networking applica-
tions cause the user’s access link to act as a network bottleneck. Standard TCP shares the capacity of a bottleneck link
among different flows according to their round-trip time (RTT), and therefore may not provide streaming applications
with the necessary bit-rate they need to function properly. Hence we seek to address the shortcomings of TCP for
adequate streaming to users running multiple TCP applications behind bandwidth-limited access links.

In prior work [8], we outline a receiver-driven bandwidth sharing system (BWSS), which allows a TCP receiver to
control the manner in which the bandwidth of the user’s access link is allocated to different applications, by adjusting
the flow-control window advertised to the sender. This allocation is done based on pre-specified user preferences. In
essence, the BWSS allows a user to break fairness among her own flows, and to partition bandwidth in an application-
specific manner. The BWSS can be used to eliminate throughput fluctuations in TCP, which are detrimental for
streaming applications. Furthermore, this system requires modest changes to a TCP receiver and does not require
any modifications to the network infrastructure or to TCP senders, facilitating easy deployment. It is our claim that
by using the BWSS to control the throughput of a streaming application using TCP, we can achieve efficient video
streaming without resorting to UDP. This can be quite beneficial for the situations in which streaming applications are
forced to use TCP to accomodate user firewalls. Furthermore, we contend that if there is congestion which is restricted
to the user’s access link, then by breaking the fairness among a user’s TCP connections, it is possible to provide higher
throughput for streaming applications than by using UDP streaming with a TCP-friendly protocol. This, in turn, leads
to an overall “better” multimedia streaming experience for the user.

The BWSS can provide benefits in several scenarios for video streaming to bandwidth-limited receivers running
multiple TCP applications. The BWSS effectively deals with the case when the overall access link bandwidth is
reduced during the streaming session, and ensures that the streaming application receives its minimum required bit-
rate. This bandwidth reduction may result from a user starting additional TCP connections during the streaming
session. The BWSS state is reset whenever a flow is started or stopped, and hence the bandwidth allocated to the new
flow is limited to prevent an adverse effect on the streaming connection. The BWSS is also effective if it is unable
to control the traffic causing the congestion on the access link. For example, a user may start a UDP session on the
host running the BWSS, or may initiate traffic to another host on a LAN connected to the Internet through the shared
access link. When such congestion occurs, the BWSS responds by re-allocating the link bandwidth to ensure that
the streaming application still has its minimum required bit-rate. There are two instances in which the BWSS fails
to provide any benefits for video streaming. The BWSS is not useful if there is congestion on the path to the video
source which limits the throughput of the streaming. Furthermore, the BWSS does not provide any benefits if there
is congestion on the access link which reduces the available capacity below the required streaming rate. These cases
require a reduction in the streaming rate and are an application-specific detail.

The rest of this paper is organized as follows. In Section 2 we discuss relevant prior work. In Section 3 we offer
an overview of our receiver-based BWSS. In Section 4 we present results from different streaming experiments on the
Internet. Finally we provide directions for future work and conclude this paper in Section 5.

2 Related Work

There have been several recent proposals which challenge the long-held belief that TCP is unsuitable for streaming
applications. The authors of [9] provide a qualitative argument for the possibility of multimedia streaming using
TCP. They note that client-side buffering can handle both the retransmission delays, and congestion control induced
throughput variations, of TCP. Another technique proposed for streaming is Receiver-based Delay Control (RDC)
[10], in which receivers delay TCP ACK packets based on router feedback. The authors of [10] attempt to mimic a
constant bit rate (CBR) connection using RDC and also propose a layered streaming method. Our approach leverages
our previously proposed BWSS described in [8] to provide a nearly CBR connection for the video stream, without any
changes to routers or sending hosts. Time-lined TCP [11] is a proposal to support streaming over TCP by assigning
deadlines to data passed to the TCP/IP stack in the operating system, and skipping any data which is past its deadline.
Similarly, TCP-RTM [12] involves modifications to both the TCP sender and receiver which allow “stepping over”
missed packets, thus avoiding the negative impact of TCP retransmissions. Our approach requires no modifications
to the TCP protocol, or to senders. Futhermore, our method may be combined with approaches such as Timelined
TCP or TCP-RTM to provide guaranteed throughput for a TCP connection, in addition to the real-time performance
enhancements of these protocols.



3 System Description

We now provide an overview of our receiver-controlled BWSS for TCP applications, originally proposed in [8]. The
goal of the BWSS is to allow a user to prioritize among applications by partitioning the limited access link bandwidth
according to her preferences. The essential idea behind the system is to constrain the throughput of certain low-priority
applications in order to provide additional bandwidth, if possible, for higher-priority flows as specified by the user’s
profile. Since our primary focus in this work is not the BWSS itself, but instead the utilization of the BWSS for efficient
video streaming, our description of the system will be intentionally brief. We first discuss the bandwidth allocation
model supported by the BWSS. We then briefly discuss the various components of our receiver-based solution. We
conclude this section with a discussion of implementation issues related to our system prototype, used in conducting
experiments, and highlight changes made to the system as described in [8].

3.1 Bandwidth Allocation Model

The bandwidth allocation model used by the BWSS recognizes two categories of applications: those that require a
minimum throughput guarantee, and those which do not have any such requirements. For example, streaming appli-
cations are only viable above the streaming rate, and for a given pre-coded content at a fixed bit-rate, the perceptual
quality does not significantly improve with throughput increases. Meanwhile, a file transfer application does not have
any strict minimal bandwidth requirement, but may benefit from additional bandwidth. In order to capture the essence
of such application preferences, we assign a priority, a minimal rate, and a weight to each TCP connection destined to
the receiver. The bandwidth is allocated to applications according to the following algorithm. First, the minimal rate
is provided to every connection, in decreasing order of application priority. Then, the remaining bandwidth is shared
proportionally to the weight of the connection. This formulation captures the possibility that a receiver might prefer
to starve low priority connections in order to improve higher priority ones. This is certainly desirable when sharing
the bandwidth among all the connections makes it impossible to run any application well. It also captures the idea of
weighted fair sharing of bandwidth between viable applications.

3.2 System Components
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Figure 1: Receiver-based system for bandwidth sharing

We now briefly describe the different components of the BWSS, shown in the block diagram in Figure 1. More
details of the BWSS are included in [8]. The main building block of the BWSS is the TCP Flow Control System (FCS),
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which can constrain the rate of a given TCP connection to a particular bit-rate achievable given the flow’s congestion
window. As shown in Figure 2, the FCS is an iterative three stage process which consists of measuring the actual
bit-rate of a flow, calculating the difference between the measured and target bit-rates, and then adapting the receiver’s
advertised window to achieve the desired target rate. A key component of the BWSS is the parameter �, which is
the system target bit-rate. This value represents the sum of target bit-rates allocated to different flows. As shown in
Figure 1, given � and external user-preferences, the Target Rate Allocation Sub-system determines the target bit-rates
for each FCS in the BWSS. Since � is responsible for the FCS target bit-rates, it is indirectly responsible for the
actual throughput of these flows, and consequently it determines the overall link utilization. Hence the � Calculation
Sub-system is responsible for determining the optimal value of � which achieves full link utilization. It converges to
this value by increasing or decreasing the value of � and considering the actual measured throughput of the different
connections.

3.3 Prototype Implementation

We utilize a prototype of the BWSS for the Linux operating system to conduct various experiments involving video
streaming. The BWSS is implemented as a shared library which overrides the connect() and read() functions of the C
standard library, glibc, to provide the desired functionality of the BWSS. Additional details about the implementation
of the BWSS are available in [8]. We will now highlight some changes made to the BWSS as described in our prior
work.

In [8], the � Calculation Sub-system made incremental changes to � and then measured the impact of these changes
on actual flow throughput before considering additional changes. The process of increasing or decreasing � and then
measuring the impact of these changes generally resulted in a fairly long convergence time, as shown in the NS-2
simulation results in [8]. Our simulations had indicated that the system needed to constantly “probe” the network for
any possible increases in bandwidth, much like TCP, in order to ensure full utilization of the access link.

Subsequent operational experience with the BWSS over the actual Internet has led us to a much simpler formulation
of the � Calculation Sub-system, which is able to adapt to changes in flow throughput more rapidly. Specifically, the
current � Calculation Sub-System is simply reactive: it uses repeated measurements of the aggregate flow throughput
to determine the value of �. When the system is started, the initial aggregate TCP throughput is used as the initial
value of �. There are two different forms of congestion that the system must respond to: congestion which only
affects a particular flow, and congestion which affects the entire access link. Furthermore, the system must be able to
distinguish these two cases, and respond appropriately when congestion subsides. We will now examine the BWSS
response to these two cases in more detail.

If there is congestion which affects a particular flow, the BWSS measures a throughput reduction for this flow, and



responds by allocating additional unused bandwidth from this flow to other connections. Specifically, if the measured
throughput for a flow is below a fraction, �, of its target bit-rate, � , then � is increased by �� � �� � � . The BWSS
keeps track of a flow that experiences congestion, and when its measured throughput exceeds � � � , signalling the end
of congestion, � is set to the new measured aggregate throughput. To distinguish congestion which affects a particular
connection from that which affects the entire access link, the BWSS uses a simple heuristic. If the throughput of at
least half of the connections have been reduced below � � � , where � represents the target rate of a given flow, then
the BWSS concludes that the congestion affects the entire access link, and responds by reducing � to the measured
aggregate throughput. After congestion subsides, the BWSS is able to measure an increase in the aggregate throughput.
This increase in the aggregate throughput hints at the end of the congestion, and the BWSS responds by setting � to the
new measured aggregate throughput. As shown in Section 4, this new reactive nature of the � Calculation Sub-system
allows faster convergence to the rate than the previous approach in [8].

4 Internet Experiments

To demonstrate the efficacy of video streaming over TCP using the BWSS, we have performed experiments using
the Internet as our network testbed. We first discuss the experimental setup in more detail. We then describe an
experiment which offers an example of a situation in which the BWSS offers better performance than TCP and a
congestion-adaptive UDP protocol, using a popular video streaming application for our tests. Specifically, we compare
the streaming performance of video encoded in SureStream RealVideo format streamed to a linux RealOne[13] client
using TCP, TCP with the BWSS, and UDP.
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Figure 3: Experimental Setup. FTP/Video and interfering cross traffic sent to Vonnegut running BWSS

4.1 Experimental Setup

The network configuration used in our Internet experiments is shown in Figure 3. In the experiments, the host Von-
negut, a machine located in the eecs.berkeley.edu domain, is the recipient of Internet traffic. Since Vonnegut is
actually connected to the Internet through a fast connection, we utilize the NIST Net [14] network emulation package
to emulate a slower Broadband connection, which serves as our access link bottleneck. NIST Net employs a Linux
kernel module to buffer incoming packets to limit the bandwidth of the connection, and to introduce delays which
reflect a slower Internet connection. We use NIST Net to limit our overall incoming throughput to 960 Kbps and to
introduce an additional delay of 30ms, which models the performance of a 1Mb/s Broadband Internet connection, such
as that provided by DSL and Cable-Modem Internet Service Providers (ISPs).

All experiments involve a particular video source and two FTP sources sending data to Vonnegut, which is running
the BWSS. At some point during each experiment, cross-traffic is sent from a different source to Vonnegut, creating
congestion on the access-link. The interfering cross traffic is a constant bit-rate (CBR) UDP data stream generated



using the Real-Time UDP Data Emitter (RUDE) [15]. We use the throughput seen by the different applications, as well
as the aggregate throughput of the receiving host as our performance criteria. The throughput received by the different
applications is measured by a throughput measurement library which records the timestamps and sizes of packets read
by the different applications. We perform 3 trials of each given experiment, and graph the average of these runs in all
of our figures.

It is important to note that the BWSS is unable to control the interfering cross-traffic in any manner. The motivation
for performing this sort of experiment is that it simulates the scenario when a single access-link to the Internet may
be shared among multiple PCs connected via a LAN. In this case, it is possible for a user of one machine to generate
traffic which causes congestion on the access-link and interferes with traffic destined to another machine on the LAN.
It also models the case when a new UDP connection is started on the host running the BWSS.

4.2 RealVideo Streaming Experiments

We now demonstrate that streaming with TCP and the BWSS can offer better performance than either standard TCP or
a congestion-adaptive UDP protocol. We conduct an experiment in which we stream a trailer for the movie “The Lion
King” encoded using RealNetworks’s SureStream 1 technology. SureStream technology, supported by RealNetworks’s
Helix Producer [16], supports encoding of the video stream at multiple bit-rates, and dynamically switches between the
different encoded streams based on the available bandwidth. The trailer is encoded to support several different bit-rates:
450Kbps, 350Kbps, 262 Kbps, and 60Kbps. We choose to use SureStream technology since it is representative of the
standard industry approach being taken by streaming media applications to address the congestion control deficiencies
of UDP. Note that TCP-friendly streaming protocols must react to congestion by reducing the sending rate regardless
of whether the congestion takes place in the network or at the user’s access-link. The BWSS, on the other hand, is
aware of the other TCP connections running on the user’s host, and is able to break the fairness among these flows,
without adversely affecting external flows, in order to obtain additional bandwidth for high-priority applications, such
as video streaming.

We have installed a basic version of the Helix Universal Server [17] at the video source used for streaming the trailer.
In addition to the streaming of the trailer, we have also executed two concurrent FTP sessions to ftp12.freebsd.org and
ftp13.freebsd.org . At time 60 seconds, we introduce a 240Kbps interfering UDP flow which lasts for 40 seconds. As
shown in Figure 4, the TCP SureStream flow is unable to maintain the necessary throughput for streaming at 450Kbps.
We observe that with TCP, the SureStream technology does not try to switch to the 350Kbps encoding when the
throughput decreases, resulting in a very poor viewing experience.

Meanwhile as Figure 5 shows, with UDP, the SureStream technology is capable of effectively streaming at 350Kbps
2, but does not switch to the 450Kbps stream until the congestion has subsided at approximately 100 seconds into the
experiment. This is evidenced by the rise in throughput for the video stream at 110 seconds, and the switch from the
350Kbps stream to the 450Kbps stream is confirmed by the RealOne client. The throughput of the RealOne client
using TCP and the BWSS is shown in Figure 6. The video streaming connection is assigned a higher priority than the
FTP applications and has a minimum rate of 520Kbps 3 The remaining bandwidth is shared equally among the FTP
connections which were assigned a weight of 1 in the BWSS. As shown in Figure 6, the BWSS is able to ensure that
the RealOne client has enough bandwidth to effectively stream the trailer at 450Kbps, despite the introduction of the
interfering cross-traffic. The average streaming rate for this experiment for TCP, UDP, and TCP with the BWSS are
354Kbps, 442Kbps, and 488Kbps respectively. These results confirm our initial claims that the BWSS can provide
better streaming performance than standard TCP, and in certain situations, can actually provide superior performance
to congestion-adaptive UDP protocols.

1SureStream, Helix Producer, Helix Universal Server and RealOne Player are trademarks of RealNetworks Inc.
2The Helix Universal Server streams video at a faster rate than its encoded-rate whenever possible, most likely to fill the receiver’s buffer to deal

with varying network conditions. This phenomenon is shown in Figure 5 where the server sends the 350Kbps encoded stream at 400Kbps
3Even though the highest encoded bit rate is 450Kbps, we choose 520Kbps to be the minimum rate in order to accomodate the Helix Universal

Server
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Figure 4: Bandwidth partition for TCP SureStream for experiment 2
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Figure 5: Bandwidth partition for UDP SureStream for experiment 2
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Figure 6: Bandwidth partition for BWSS SureStream for experiment 2



5 Conclusions and Future Work

In this work we have conducted a preliminary investigation of video streaming over TCP using a receiver-controlled
BWSS. The BWSS allows prioritization of certain connections by providing them with additional bandwidth and
works without changes to the network infrastructure or sending hosts. The BWSS achieves this prioritization by
breaking the fairness among a user’s TCP connections in a manner unavailable to TCP-friendly UDP protocols, which
must ensure fairness with all competing TCP traffic, regardless of the destination. Through Internet experiments
we have shown that streaming with the BWSS offers superior performance to streaming with standard TCP alone.
Futhermore, we have demonstrated situations in which streaming using the BWSS can offer better performance than
even congestion-adaptive UDP streaming protocols.

A natural question to ask is whether the BWSS can possibly be extended to incorporate both UDP and TCP flows.
This future direction of research leads to interesting challenges. The most obvious is that although the BWSS sacrifices
fairness among a user’s TCP connections, it does not modify TCP in any manner that leads to unfairness with com-
peting TCP traffic. Great care must be taken when operating with UDP flows to ensure that they remain TCP-friendly.
One possible approach is to create a virtual pipe for the UDP traffic by restricting the TCP traffic to some fraction
of the overall bandwidth. Hence it may be possible to set aside 500Kbps for a particular UDP streaming application
and to restrict the user’s competing TCP traffic to the remaining available bandwidth so that it does not interfere with
the UDP stream. Additionally, while TCP offers an application-independent manner of controlling the bandwidth
of certain flows by restricting the user’s advertised window, UDP traffic is inherently application specific and offers
no similar control knobs. We intend to explore different techniques to generalize the BWSS to provide a complete
end-host solution to allow application-specific bandwidth allocation regardless of the underlying network protocol.
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